国内精品久久久久_亚洲区手机在线中文无码播放_国内精品久久久久影院一蜜桃_日韩内射激情视频在线播放免费

      虛擬現(xiàn)實產(chǎn)業(yè)?

      時間:2025-06-11 17:28 人氣:0 編輯:招聘街

      一、虛擬現(xiàn)實產(chǎn)業(yè)?

      虛擬現(xiàn)實(含增強現(xiàn)實、混合現(xiàn)實,簡稱VR)融合應用了多媒體、傳感器、新型顯示、互聯(lián)網(wǎng)和人工智能等多領域技術,能夠拓展人類感知能力,改變產(chǎn)品形態(tài)和服務模式,給經(jīng)濟、科技、文化、軍事、生活等領域帶來深刻影響。全球虛擬現(xiàn)實產(chǎn)業(yè)正從起步培育期向快速發(fā)展期邁進,我國面臨同步參與國際技術產(chǎn)業(yè)創(chuàng)新的難得機遇,但也存在關鍵技術和高端產(chǎn)品供給不足、內(nèi)容與服務較為匱乏、創(chuàng)新支撐體系不健全、應用生態(tài)不完善等問題。為加快我國虛擬現(xiàn)實產(chǎn)業(yè)發(fā)展,推動虛擬現(xiàn)實應用創(chuàng)新,培育信息產(chǎn)業(yè)新增長點和新動能,

      二、虛擬現(xiàn)實概念?

      所謂虛擬現(xiàn)實,顧名思義,就是虛擬和現(xiàn)實相互結合。從理論上來講,虛擬現(xiàn)實技術(VR)是一種可以創(chuàng)建和體驗虛擬世界的計算機仿真系統(tǒng),它利用計算機生成一種模擬環(huán)境,使用戶沉浸到該環(huán)境中。虛擬現(xiàn)實技術就是利用現(xiàn)實生活中的數(shù)據(jù),通過計算機技術產(chǎn)生的電子信號,將其與各種輸出設備結合使其轉化為能夠讓人們感受到的現(xiàn)象,這些現(xiàn)象可以是現(xiàn)實中真真切切的物體,也可以是我們?nèi)庋鬯床坏降奈镔|(zhì),通過三維模型表現(xiàn)出來。因為這些現(xiàn)象不是我們直接所能看到的,而是通過計算機技術模擬出來的現(xiàn)實中的世界,故稱為虛擬現(xiàn)實。

      虛擬現(xiàn)實技術受到了越來越多人的認可,用戶可以在虛擬現(xiàn)實世界體驗到最真實的感受,其模擬環(huán)境的真實性與現(xiàn)實世界難辨真假,讓人有種身臨其境的感覺;同時,虛擬現(xiàn)實具有一切人類所擁有的感知功能,比如聽覺、視覺、觸覺、味覺、嗅覺等感知系統(tǒng);最后,它具有超強的仿真系統(tǒng),真正實現(xiàn)了人機交互,使人在操作過程中,可以隨意操作并且得到環(huán)境最真實的反饋。正是虛擬現(xiàn)實技術的存在性、多感知性、交互性等特征使它受到了許多人的喜愛。

      三、mahout面試題?

      之前看了Mahout官方示例 20news 的調(diào)用實現(xiàn);于是想根據(jù)示例的流程實現(xiàn)其他例子。網(wǎng)上看到了一個關于天氣適不適合打羽毛球的例子。

      訓練數(shù)據(jù):

      Day Outlook Temperature Humidity Wind PlayTennis

      D1 Sunny Hot High Weak No

      D2 Sunny Hot High Strong No

      D3 Overcast Hot High Weak Yes

      D4 Rain Mild High Weak Yes

      D5 Rain Cool Normal Weak Yes

      D6 Rain Cool Normal Strong No

      D7 Overcast Cool Normal Strong Yes

      D8 Sunny Mild High Weak No

      D9 Sunny Cool Normal Weak Yes

      D10 Rain Mild Normal Weak Yes

      D11 Sunny Mild Normal Strong Yes

      D12 Overcast Mild High Strong Yes

      D13 Overcast Hot Normal Weak Yes

      D14 Rain Mild High Strong No

      檢測數(shù)據(jù):

      sunny,hot,high,weak

      結果:

      Yes=》 0.007039

      No=》 0.027418

      于是使用Java代碼調(diào)用Mahout的工具類實現(xiàn)分類。

      基本思想:

      1. 構造分類數(shù)據(jù)。

      2. 使用Mahout工具類進行訓練,得到訓練模型。

      3。將要檢測數(shù)據(jù)轉換成vector數(shù)據(jù)。

      4. 分類器對vector數(shù)據(jù)進行分類。

      接下來貼下我的代碼實現(xiàn)=》

      1. 構造分類數(shù)據(jù):

      在hdfs主要創(chuàng)建一個文件夾路徑 /zhoujainfeng/playtennis/input 并將分類文件夾 no 和 yes 的數(shù)據(jù)傳到hdfs上面。

      數(shù)據(jù)文件格式,如D1文件內(nèi)容: Sunny Hot High Weak

      2. 使用Mahout工具類進行訓練,得到訓練模型。

      3。將要檢測數(shù)據(jù)轉換成vector數(shù)據(jù)。

      4. 分類器對vector數(shù)據(jù)進行分類。

      這三步,代碼我就一次全貼出來;主要是兩個類 PlayTennis1 和 BayesCheckData = =》

      package myTesting.bayes;

      import org.apache.hadoop.conf.Configuration;

      import org.apache.hadoop.fs.FileSystem;

      import org.apache.hadoop.fs.Path;

      import org.apache.hadoop.util.ToolRunner;

      import org.apache.mahout.classifier.naivebayes.training.TrainNaiveBayesJob;

      import org.apache.mahout.text.SequenceFilesFromDirectory;

      import org.apache.mahout.vectorizer.SparseVectorsFromSequenceFiles;

      public class PlayTennis1 {

      private static final String WORK_DIR = "hdfs://192.168.9.72:9000/zhoujianfeng/playtennis";

      /*

      * 測試代碼

      */

      public static void main(String[] args) {

      //將訓練數(shù)據(jù)轉換成 vector數(shù)據(jù)

      makeTrainVector();

      //產(chǎn)生訓練模型

      makeModel(false);

      //測試檢測數(shù)據(jù)

      BayesCheckData.printResult();

      }

      public static void makeCheckVector(){

      //將測試數(shù)據(jù)轉換成序列化文件

      try {

      Configuration conf = new Configuration();

      conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

      String input = WORK_DIR+Path.SEPARATOR+"testinput";

      String output = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";

      Path in = new Path(input);

      Path out = new Path(output);

      FileSystem fs = FileSystem.get(conf);

      if(fs.exists(in)){

      if(fs.exists(out)){

      //boolean參數(shù)是,是否遞歸刪除的意思

      fs.delete(out, true);

      }

      SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();

      String[] params = new String[]{"-i",input,"-o",output,"-ow"};

      ToolRunner.run(sffd, params);

      }

      } catch (Exception e) {

      // TODO Auto-generated catch block

      e.printStackTrace();

      System.out.println("文件序列化失敗!");

      System.exit(1);

      }

      //將序列化文件轉換成向量文件

      try {

      Configuration conf = new Configuration();

      conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

      String input = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";

      String output = WORK_DIR+Path.SEPARATOR+"tennis-test-vectors";

      Path in = new Path(input);

      Path out = new Path(output);

      FileSystem fs = FileSystem.get(conf);

      if(fs.exists(in)){

      if(fs.exists(out)){

      //boolean參數(shù)是,是否遞歸刪除的意思

      fs.delete(out, true);

      }

      SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();

      String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};

      ToolRunner.run(svfsf, params);

      }

      } catch (Exception e) {

      // TODO Auto-generated catch block

      e.printStackTrace();

      System.out.println("序列化文件轉換成向量失敗!");

      System.out.println(2);

      }

      }

      public static void makeTrainVector(){

      //將測試數(shù)據(jù)轉換成序列化文件

      try {

      Configuration conf = new Configuration();

      conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

      String input = WORK_DIR+Path.SEPARATOR+"input";

      String output = WORK_DIR+Path.SEPARATOR+"tennis-seq";

      Path in = new Path(input);

      Path out = new Path(output);

      FileSystem fs = FileSystem.get(conf);

      if(fs.exists(in)){

      if(fs.exists(out)){

      //boolean參數(shù)是,是否遞歸刪除的意思

      fs.delete(out, true);

      }

      SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();

      String[] params = new String[]{"-i",input,"-o",output,"-ow"};

      ToolRunner.run(sffd, params);

      }

      } catch (Exception e) {

      // TODO Auto-generated catch block

      e.printStackTrace();

      System.out.println("文件序列化失敗!");

      System.exit(1);

      }

      //將序列化文件轉換成向量文件

      try {

      Configuration conf = new Configuration();

      conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

      String input = WORK_DIR+Path.SEPARATOR+"tennis-seq";

      String output = WORK_DIR+Path.SEPARATOR+"tennis-vectors";

      Path in = new Path(input);

      Path out = new Path(output);

      FileSystem fs = FileSystem.get(conf);

      if(fs.exists(in)){

      if(fs.exists(out)){

      //boolean參數(shù)是,是否遞歸刪除的意思

      fs.delete(out, true);

      }

      SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();

      String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};

      ToolRunner.run(svfsf, params);

      }

      } catch (Exception e) {

      // TODO Auto-generated catch block

      e.printStackTrace();

      System.out.println("序列化文件轉換成向量失敗!");

      System.out.println(2);

      }

      }

      public static void makeModel(boolean completelyNB){

      try {

      Configuration conf = new Configuration();

      conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

      String input = WORK_DIR+Path.SEPARATOR+"tennis-vectors"+Path.SEPARATOR+"tfidf-vectors";

      String model = WORK_DIR+Path.SEPARATOR+"model";

      String labelindex = WORK_DIR+Path.SEPARATOR+"labelindex";

      Path in = new Path(input);

      Path out = new Path(model);

      Path label = new Path(labelindex);

      FileSystem fs = FileSystem.get(conf);

      if(fs.exists(in)){

      if(fs.exists(out)){

      //boolean參數(shù)是,是否遞歸刪除的意思

      fs.delete(out, true);

      }

      if(fs.exists(label)){

      //boolean參數(shù)是,是否遞歸刪除的意思

      fs.delete(label, true);

      }

      TrainNaiveBayesJob tnbj = new TrainNaiveBayesJob();

      String[] params =null;

      if(completelyNB){

      params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow","-c"};

      }else{

      params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow"};

      }

      ToolRunner.run(tnbj, params);

      }

      } catch (Exception e) {

      // TODO Auto-generated catch block

      e.printStackTrace();

      System.out.println("生成訓練模型失敗!");

      System.exit(3);

      }

      }

      }

      package myTesting.bayes;

      import java.io.IOException;

      import java.util.HashMap;

      import java.util.Map;

      import org.apache.commons.lang.StringUtils;

      import org.apache.hadoop.conf.Configuration;

      import org.apache.hadoop.fs.Path;

      import org.apache.hadoop.fs.PathFilter;

      import org.apache.hadoop.io.IntWritable;

      import org.apache.hadoop.io.LongWritable;

      import org.apache.hadoop.io.Text;

      import org.apache.mahout.classifier.naivebayes.BayesUtils;

      import org.apache.mahout.classifier.naivebayes.NaiveBayesModel;

      import org.apache.mahout.classifier.naivebayes.StandardNaiveBayesClassifier;

      import org.apache.mahout.common.Pair;

      import org.apache.mahout.common.iterator.sequencefile.PathType;

      import org.apache.mahout.common.iterator.sequencefile.SequenceFileDirIterable;

      import org.apache.mahout.math.RandomAccessSparseVector;

      import org.apache.mahout.math.Vector;

      import org.apache.mahout.math.Vector.Element;

      import org.apache.mahout.vectorizer.TFIDF;

      import com.google.common.collect.ConcurrentHashMultiset;

      import com.google.common.collect.Multiset;

      public class BayesCheckData {

      private static StandardNaiveBayesClassifier classifier;

      private static Map<String, Integer> dictionary;

      private static Map<Integer, Long> documentFrequency;

      private static Map<Integer, String> labelIndex;

      public void init(Configuration conf){

      try {

      String modelPath = "/zhoujianfeng/playtennis/model";

      String dictionaryPath = "/zhoujianfeng/playtennis/tennis-vectors/dictionary.file-0";

      String documentFrequencyPath = "/zhoujianfeng/playtennis/tennis-vectors/df-count";

      String labelIndexPath = "/zhoujianfeng/playtennis/labelindex";

      dictionary = readDictionnary(conf, new Path(dictionaryPath));

      documentFrequency = readDocumentFrequency(conf, new Path(documentFrequencyPath));

      labelIndex = BayesUtils.readLabelIndex(conf, new Path(labelIndexPath));

      NaiveBayesModel model = NaiveBayesModel.materialize(new Path(modelPath), conf);

      classifier = new StandardNaiveBayesClassifier(model);

      } catch (IOException e) {

      // TODO Auto-generated catch block

      e.printStackTrace();

      System.out.println("檢測數(shù)據(jù)構造成vectors初始化時報錯。。。。");

      System.exit(4);

      }

      }

      /**

      * 加載字典文件,Key: TermValue; Value:TermID

      * @param conf

      * @param dictionnaryDir

      * @return

      */

      private static Map<String, Integer> readDictionnary(Configuration conf, Path dictionnaryDir) {

      Map<String, Integer> dictionnary = new HashMap<String, Integer>();

      PathFilter filter = new PathFilter() {

      @Override

      public boolean accept(Path path) {

      String name = path.getName();

      return name.startsWith("dictionary.file");

      }

      };

      for (Pair<Text, IntWritable> pair : new SequenceFileDirIterable<Text, IntWritable>(dictionnaryDir, PathType.LIST, filter, conf)) {

      dictionnary.put(pair.getFirst().toString(), pair.getSecond().get());

      }

      return dictionnary;

      }

      /**

      * 加載df-count目錄下TermDoc頻率文件,Key: TermID; Value:DocFreq

      * @param conf

      * @param dictionnaryDir

      * @return

      */

      private static Map<Integer, Long> readDocumentFrequency(Configuration conf, Path documentFrequencyDir) {

      Map<Integer, Long> documentFrequency = new HashMap<Integer, Long>();

      PathFilter filter = new PathFilter() {

      @Override

      public boolean accept(Path path) {

      return path.getName().startsWith("part-r");

      }

      };

      for (Pair<IntWritable, LongWritable> pair : new SequenceFileDirIterable<IntWritable, LongWritable>(documentFrequencyDir, PathType.LIST, filter, conf)) {

      documentFrequency.put(pair.getFirst().get(), pair.getSecond().get());

      }

      return documentFrequency;

      }

      public static String getCheckResult(){

      Configuration conf = new Configuration();

      conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

      String classify = "NaN";

      BayesCheckData cdv = new BayesCheckData();

      cdv.init(conf);

      System.out.println("init done...............");

      Vector vector = new RandomAccessSparseVector(10000);

      TFIDF tfidf = new TFIDF();

      //sunny,hot,high,weak

      Multiset<String> words = ConcurrentHashMultiset.create();

      words.add("sunny",1);

      words.add("hot",1);

      words.add("high",1);

      words.add("weak",1);

      int documentCount = documentFrequency.get(-1).intValue(); // key=-1時表示總文檔數(shù)

      for (Multiset.Entry<String> entry : words.entrySet()) {

      String word = entry.getElement();

      int count = entry.getCount();

      Integer wordId = dictionary.get(word); // 需要從dictionary.file-0文件(tf-vector)下得到wordID,

      if (StringUtils.isEmpty(wordId.toString())){

      continue;

      }

      if (documentFrequency.get(wordId) == null){

      continue;

      }

      Long freq = documentFrequency.get(wordId);

      double tfIdfValue = tfidf.calculate(count, freq.intValue(), 1, documentCount);

      vector.setQuick(wordId, tfIdfValue);

      }

      // 利用貝葉斯算法開始分類,并提取得分最好的分類label

      Vector resultVector = classifier.classifyFull(vector);

      double bestScore = -Double.MAX_VALUE;

      int bestCategoryId = -1;

      for(Element element: resultVector.all()) {

      int categoryId = element.index();

      double score = element.get();

      System.out.println("categoryId:"+categoryId+" score:"+score);

      if (score > bestScore) {

      bestScore = score;

      bestCategoryId = categoryId;

      }

      }

      classify = labelIndex.get(bestCategoryId)+"(categoryId="+bestCategoryId+")";

      return classify;

      }

      public static void printResult(){

      System.out.println("檢測所屬類別是:"+getCheckResult());

      }

      }

      四、webgis面試題?

      1. 請介紹一下WebGIS的概念和作用,以及在實際應用中的優(yōu)勢和挑戰(zhàn)。

      WebGIS是一種基于Web技術的地理信息系統(tǒng),通過將地理數(shù)據(jù)和功能以可視化的方式呈現(xiàn)在Web瀏覽器中,實現(xiàn)地理空間數(shù)據(jù)的共享和分析。它可以用于地圖瀏覽、空間查詢、地理分析等多種應用場景。WebGIS的優(yōu)勢包括易于訪問、跨平臺、實時更新、可定制性強等,但也面臨著數(shù)據(jù)安全性、性能優(yōu)化、用戶體驗等挑戰(zhàn)。

      2. 請談談您在WebGIS開發(fā)方面的經(jīng)驗和技能。

      我在WebGIS開發(fā)方面有豐富的經(jīng)驗和技能。我熟悉常用的WebGIS開發(fā)框架和工具,如ArcGIS API for JavaScript、Leaflet、OpenLayers等。我能夠使用HTML、CSS和JavaScript等前端技術進行地圖展示和交互設計,并能夠使用后端技術如Python、Java等進行地理數(shù)據(jù)處理和分析。我還具備數(shù)據(jù)庫管理和地理空間數(shù)據(jù)建模的能力,能夠設計和優(yōu)化WebGIS系統(tǒng)的架構。

      3. 請描述一下您在以往項目中使用WebGIS解決的具體問題和取得的成果。

      在以往的項目中,我使用WebGIS解決了許多具體問題并取得了顯著的成果。例如,在一次城市規(guī)劃項目中,我開發(fā)了一個基于WebGIS的交通流量分析系統(tǒng),幫助規(guī)劃師們評估不同交通方案的效果。另外,在一次環(huán)境監(jiān)測項目中,我使用WebGIS技術實現(xiàn)了實時的空氣質(zhì)量監(jiān)測和預警系統(tǒng),提供了準確的空氣質(zhì)量數(shù)據(jù)和可視化的分析結果,幫助政府和公眾做出相應的決策。

      4. 請談談您對WebGIS未來發(fā)展的看法和期望。

      我認為WebGIS在未來會繼續(xù)發(fā)展壯大。隨著云計算、大數(shù)據(jù)和人工智能等技術的不斷進步,WebGIS將能夠處理更大規(guī)模的地理數(shù)據(jù)、提供更豐富的地理分析功能,并與其他領域的技術進行深度融合。我期望未來的WebGIS能夠更加智能化、個性化,為用戶提供更好的地理信息服務,助力各行各業(yè)的決策和發(fā)展。

      五、freertos面試題?

      這塊您需要了解下stm32等單片機的基本編程和簡單的硬件設計,最好能夠了解模電和數(shù)電相關的知識更好,還有能夠會做操作系統(tǒng),簡單的有ucos,freeRTOS等等。最好能夠使用PCB畫圖軟件以及keil4等軟件。希望對您能夠有用。

      六、paas面試題?

      1.負責區(qū)域大客戶/行業(yè)客戶管理系統(tǒng)銷售拓展工作,并完成銷售流程;

      2.維護關鍵客戶關系,與客戶決策者保持良好的溝通;

      3.管理并帶領團隊完成完成年度銷售任務。

      七、面試題類型?

      你好,面試題類型有很多,以下是一些常見的類型:

      1. 技術面試題:考察候選人技術能力和經(jīng)驗。

      2. 行為面試題:考察候選人在過去的工作或生活中的行為表現(xiàn),以預測其未來的表現(xiàn)。

      3. 情境面試題:考察候選人在未知情境下的決策能力和解決問題的能力。

      4. 案例面試題:考察候選人解決實際問題的能力,模擬真實工作場景。

      5. 邏輯推理題:考察候選人的邏輯思維能力和分析能力。

      6. 開放性面試題:考察候選人的個性、價值觀以及溝通能力。

      7. 挑戰(zhàn)性面試題:考察候選人的應變能力和創(chuàng)造力,通常是一些非常具有挑戰(zhàn)性的問題。

      八、cocoscreator面試題?

      需要具體分析 因為cocoscreator是一款游戲引擎,面試時的問題會涉及到不同的方面,如開發(fā)經(jīng)驗、游戲設計、圖形學等等,具體要求也會因公司或崗位而異,所以需要根據(jù)實際情況進行具體分析。 如果是針對開發(fā)經(jīng)驗的問題,可能會考察候選人是否熟悉cocoscreator常用API,是否能夠獨立開發(fā)小型游戲等等;如果是針對游戲設計的問題,則需要考察候選人對游戲玩法、關卡設計等等方面的理解和能力。因此,需要具體分析才能得出準確的回答。

      九、mycat面試題?

      以下是一些可能出現(xiàn)在MyCat面試中的問題:

      1. 什么是MyCat?MyCat是一個開源的分布式數(shù)據(jù)庫中間件,它可以將多個MySQL數(shù)據(jù)庫組合成一個邏輯上的數(shù)據(jù)庫集群,提供高可用性、高性能、易擴展等特性。

      2. MyCat的優(yōu)勢是什么?MyCat具有以下優(yōu)勢:支持讀寫分離、支持分庫分表、支持自動切換故障節(jié)點、支持SQL解析和路由、支持數(shù)據(jù)分片等。

      3. MyCat的架構是怎樣的?MyCat的架構包括三個層次:客戶端層、中間件層和數(shù)據(jù)存儲層。客戶端層負責接收和處理客戶端請求,中間件層負責SQL解析和路由,數(shù)據(jù)存儲層負責實際的數(shù)據(jù)存儲和查詢。

      4. MyCat支持哪些數(shù)據(jù)庫?MyCat目前支持MySQL和MariaDB數(shù)據(jù)庫。

      5. MyCat如何實現(xiàn)讀寫分離?MyCat通過將讀請求和寫請求分別路由到不同的MySQL節(jié)點上實現(xiàn)讀寫分離。讀請求可以路由到多個只讀節(jié)點上,從而提高查詢性能。

      6. MyCat如何實現(xiàn)分庫分表?MyCat通過對SQL進行解析和路由,將數(shù)據(jù)按照一定規(guī)則劃分到不同的數(shù)據(jù)庫或表中,從而實現(xiàn)分庫分表。

      7. MyCat如何保證數(shù)據(jù)一致性?MyCat通過在多個MySQL節(jié)點之間同步數(shù)據(jù),保證數(shù)據(jù)的一致性。同時,MyCat還支持自動切換故障節(jié)點,從而保證系統(tǒng)的高可用性。

      8. MyCat的部署方式有哪些?MyCat可以部署在單機上,也可以部署在多臺服務器上實現(xiàn)分布式部署。

      十、虛擬現(xiàn)實的含義?

      虛擬現(xiàn)實是采用電腦技術及相關設備構造一個本不存在的事物或環(huán)境,使人有身臨其境的感覺。

      一般虛擬現(xiàn)實系統(tǒng)由以下幾部分組成:用來獲取人的動作等信息的各種傳感器:使人產(chǎn)生立體視覺、聽覺和觸覺等各種感覺的印象器;還有就是能進行數(shù)據(jù)處理的高性能電腦系統(tǒng)。

      當人們穿戴上帶有各種傳感器的數(shù)據(jù)衣服和數(shù)據(jù)手套等設備,輔以裝有顯示器的印象器設備,就進入了一個虛擬的世界,通過頭盔里的顯示器可以看到各種景象,聽到各種聲音,甚至還能聞到氣味等。人們的動作會被傳感器傳送給電腦處理并做出相應的變化。虛擬世界的最大特點就是“逼真”與“交互”性。人們在虛擬世界中就如同在真實世界一樣,環(huán)境像真的,人也像在真環(huán)境中一樣活動。

      虛擬游戲讓游戲者親臨游戲世界。玩家眼前出現(xiàn)的就是游戲的場景,玩游戲不再是簡單的按鍵,而是要游戲者親自去參加戰(zhàn)斗。虛擬游戲使游戲娛樂更加引人入勝,將來虛擬游戲很可能與網(wǎng)絡技術結合,使世界各地的人們在虛擬世界里互通有無。 

      相關資訊
      熱門頻道

      Copyright © 2024 招聘街 滇ICP備2024020316號-38

      国内精品久久久久_亚洲区手机在线中文无码播放_国内精品久久久久影院一蜜桃_日韩内射激情视频在线播放免费

        徐闻县| 榆社县| 新巴尔虎右旗| 镇安县| 赤峰市| 黑河市| 临桂县| 恩施市| 砀山县| 东乌珠穆沁旗| 阿鲁科尔沁旗| 汉寿县| 南康市| 台湾省| 顺义区| 赤城县| 翁牛特旗| 苍山县| 平顶山市| 雅安市| 香河县| 昂仁县| 长沙市| 靖远县| 治县。| 唐山市| 汕头市| 姚安县| 崇礼县| 石泉县| 德格县| 乌兰浩特市| 绿春县| 芜湖市| 清涧县| 双桥区| 万州区| 雅江县| 湘潭县| 雷州市| 武夷山市|